Name:
Date: \qquad
Transformations

Let's learn how to identify transformations that are being done to a graph based off of the function! First, open Desmos on your computer. Let's identify our parent function and what it looks like.

What happens if we:

ADD a value to our parent function? What does the graph look like?
(2)

SUBTRACT a value from our parent function? What does the graph look like?

These transformations shift the functions \qquad and \qquad . Our formula for these transformations is \qquad .

What happens if we:

ADD a value to our x ? What does the graph look like? Make sure to use parenthesis!

SUBTRACT a value from our x ? What does the graph look like?

These transformations move the functions \qquad and \qquad . Our formula for these transformations is \qquad .

What happens if we:

MULTIPLY a value to our parent function? What does the graph look like?

DIVIDE (or multiply by a fraction) a value from our parent function? What does the graph look like?

These transformations \qquad and \qquad our functions, called \qquad . Our formula for these transformations is \qquad .

What happens if we:

Make our parent function NEGATIVE? What does the graph look like?

Make the X in our parent function NEGATIVE? What does the graph look like? Don't forget parenthesis!!

This function looks the same. Let's try this transformation with the parent function $\mathrm{y}=2^{x}$.

These transformations \qquad our functions over the x-axis and y-axis, called
\qquad . Our formulas for these transformations are \qquad (x-axis) and (y-axis).

Practice:

What do the transformations do to the functions?

1. $f(x)+2$
2. $f(x)-3$
3. $f(x+4)$
4. $f(x-5)$
5. $y=(x+3)^{2}$

What transformation is happening to the functions? What's our formula?

1. $4 x^{2}$
2. $\frac{1}{4} x^{2}$
3. $x^{2}+4$
4. $(x-4)^{2}$
